Устройство монолитных бетонных фундаментов заглубленных на одной отметке с опорой

Устройство фундамента опоры

Глубина заложения фундаментов на естественном основании для опор мостов не превышает 3–4 м. Особенность состоит в том, что их возводят в котлованах, предварительно отрытых на полную глубину. Этим они отличаются от фундаментов глубокого заложения, технология сооружения которых принципиально иная. Другая их отличительная особенность заключается в том, что в расчете не учитывается сопротивление грунта по боковой поверхности.

Работы по устройству фундамента должны начинаться немедленно после приемки основания комиссией и подписания акта, разрешающего приступить к кладке фундамента.

Непосредственно перед кладкой фундамента дно котлована должно быть зачищено до проектной отметки (разработка котлована бульдозером или экскаватором должна вестись с недобором 0,1–0,3 м, чтобы не нарушить естественную структуру грунта).

Кладку фундамента необходимо вести насухо. Во время возведения фундамента грунтовую воду откачивают постоянно, чтобы она не заливала свежую кладку до приобретения бетоном прочности не менее 2,5 МПа.

Фундаменты мелкого заложения для мостовых опор могут устраиваться из бетона класса В20, бутобетона (содержащего бутовый камень в объеме до 20% от объема кладки) и железобетона.

Для опор больших и средних мостов устраивают бетонные жесткие массивные фундаменты (рис. 2.16, а), характеризующиеся тем, что линия уступов фундамента образует угол с вертикалью, не превышающий угла распределения давления от вертикальных нагрузок (около 30°), В этом случае в теле фундамента не возникает растягивающих напряжений.

Рис. 2.16 – Фундамент мелкого заложения: а – бетонный жесткий; б – железобетонный гибкий; 1 – суглинок мягкопластичный; 2 – глина полутвердая; 3 – уровень максимального размыва; 4 – арматурная сетка

Для эстакад и путепроводов часто возводят железобетонные гибкие фундаменты, для которых нужно меньше материалов, но требуются арматурные сетки в зоне подошвы фундамента (рис. 2.16, б).

Глубина заложения фундаментов в пучинистых (глинистых) грунтах должна превышать расчетную для данного региона глубину промерзания не менее чем на 0,25 м. Для фундаментов на крупнозернистых, гравелистых и крупнообломочных грунтах этого требования нет.

Отметка заложения фундамента на естественном основании в реке должна быть ниже отметки дна не менее чем на 2,5 м с учетом местного размыва.

Порядок армирования и бетонирования фундамента регламентируется проектом производства работ. Проектная организация определяет класс бетона по прочности, марки по морозостойкости и водонепроницаемости. При сооружении фундамента должен осуществляться контроль качества работ, обеспечивающий заданные свойства конструкции.

Для армирования фундамента необходимо обеспечить толщину защитного слоя бетона не менее 50 мм.

Опалубка для фундаментов чаще всего бывает деревянной (стационарной или щитовой сборно-разборной). Влажность пиломатериалов не должна быть больше 25%. Отклонения от вертикали опалубки на всю высоту фундамента не должны превышать 20 мм, а смещение осей опалубки – 15 мм. Установленную опалубку монолитных конструкций принимает комиссия с участием прораба и представителя технадзора заказчика. Проверке подлежат:

  • правильность установки опалубки и креплений;
  • соответствие элементов опалубки проекту;
  • плотность сопряжений элементов опалубки между собой и с ранее уложенным бетоном.

Арматура для горизонтальных нижних сеток принимается по расчету (расчетная схема – плита на упругом основании, загруженная давлением от стойки). Установленная арматура конструкции принимается с составлением акта на скрытые работы. При устройстве арматурных сеток необходимо обеспечить предельные отклонения в расстояниях между стержнями не более 0,5d (d – диаметр стержня).

Бетонные работы

Бетонные работы требуют повышенного внимания со стороны персонала стройки. Контроль качества заключается в проверке:

  • качества составляющих бетон материалов;
  • качества бетонной смеси при ее приготовлении, транспортировке и укладке;
  • соблюдения правил ухода за бетоном, сроков распалубливания и загружения конструкций.

Контроль качества бетонных работ осуществляется техническим персоналом строительства, построечной лабораторией, представителями заказчика и проектной организации.

Цемент, песок и крупные заполнители должны иметь заводские паспорта, удостоверяющие соответствие качества материалов требованиям ГОСТов. Содержание в природном песке пылевидных или глинистых частиц не должно превышать 1%. Щебень и гравий, имеющие загрязненность больше допустимой по ГОСТу, необходимо промывать. Применение естественных гравийно-песчаных смесей без предварительного фракционирования не допускается. Максимальное содержание цемента при сооружении массивных фундаментов не должно превышать 300 кг/м 3 для бетонных и 350 кг/м 3 – для железобетонных конструкций. Цемент допускается только класса ДО (без добавок).

Перед укладкой бетонной смеси должны быть проверены с оформлением соответствующих актов:

  • все скрытые работы (подготовка основания, армирование, установка закладных частей и т. д.);
  • правильность установки опалубки и подмостей для бетонирования, надежность их крепления.

Следовательно, по мере готовности составляются акты освидетельствования и приемки установленной опалубки и арматуры. Кроме того, до бетонирования необходимо составить акты об испытании цемента, песка, щебня, а также карты подбора состава бетона.

В процессе бетонирования конструкций следует вести журналы бетонных работ и ухода за бетоном.

В журнал бетонных работ заносят:

  • даты начала и окончания бетонирования;
  • состав бетонной смеси, показатели ее подвижности, заданный класс бетона по прочности;
  • объем выполненных работ;
  • номера актов о взятии контрольных образцов и данные о результатах их испытаний;
  • температура наружного воздуха во время бетонирования;
  • температура бетонной смеси при бетонировании в зимних условиях и при сооружении массивных конструкций;
  • дата распалубливания конструкций.

Доставка бетонной смеси к месту укладки осуществляется автосамосвалами или автобетоносмесителями, которые загружаются на бетонном заводе готовой смесью или ее сухими компонентами. Необходимое количество автотранспортных единиц (шт.) определяется по формуле

где Т1 – продолжительность загрузки и разгрузки автотранспортного средства, мин;

Т2 – время в пути (туда и обратно), мин;

Т3 – интервал доставки бетонной смеси определяют по:

где V – полезная емкость автотранспортного средства, м 3 ;

I – принятая интенсивность бетонирования, м 3 /ч.

Так, при T1 = 10 мин, Т2 = 60 мин, V = 4 м 3 , I = 6 м 3 /ч потребное количество транспортных единиц составит:

N = (10 + 60)/(60 · 4/6) + 1 = 3 шт,

а интервал между очередными поставками бетонной смеси – 40 мин.

Подача бетонной смеси может осуществляться различными способами:

  • непосредственно в бетонируемую конструкцию кранами с использованием бадьи (кубла) емкостью 0,5–8 м 3 ;
  • по лоткам;
  • по трубопроводам с помощью бетононасосов и пневмонагнетателей.

Высота свободного сбрасывания бетонной смеси в опалубку не должна быть более 2 м при бетонировании армированных и 3 м – неармированных конструкций. Чтобы не допустить расслоения бетонной смеси (когда крупный заполнитель оседает внизу) во время сбрасывания с большой высоты, пользуются звеньевыми хоботами. Они состоят из звеньев в виде усеченных конусов, которые подвешивают один к другому.

При интенсивности бетонирования 6 м 3 /ч и более целесообразно использовать бетононасосы. На строительстве рассредоточенных объектов с небольшими объемами работ экономически выгодно использовать автобетононасосы-автобетоносмесители, которые позволяют совместить процессы транспортировки, изготовления и укладки бетонной смеси.

Укладка бетонной смеси производится после подготовки основания: скальные поверхности и рабочие швы должны быть очищены от мусора, грязи, масел, снега, льда, а также от цементной пленки (например, насечкой). Непосредственно перед укладкой очищенные поверхности надо промыть водой и просушить струей сжатого воздуха. При нескальном основании устраивают щебеночную подготовку с толщиной слоя не менее 10 см.

Бетонную смесь укладывают горизонтальными слоями без технологических перерывов с направлением укладки в одну сторону. Толщина слоя при работе ручными глубинными вибраторами должна оставаться в пределах 25–40 см.

Если бетонируют большие площади, допускается укладывать и уплотнять бетонную смесь наклонными слоями, с образованием горизонтального опережающего участка длиной 1,5–2 м. Угол наклона поверхности уложенного слоя к горизонту перед уплотнением смеси не должен превышать 30°. Уплотнение производят, начиная от опережающего слоя.

Каждый последующий слой надо укладывать до начала схватывания бетона предыдущего слоя (ориентировочно 2–3 часа). Если все же был перерыв, и он превысил время начала схватывания бетона (т.е. если бетон потерял способность к тиксотропному разжижению), необходим рабочий шов. В этом случае продолжить укладку бетонной смеси можно только после набора бетоном прочности:

  • 0,3 МПа при очистке основания от цементной пленки водной или воздушной струей;
  • 1,5 МПа при очистке металлической щеткой.

Прочность бетона в зависимости от температуры и срока твердения для портландцемента можно принимать ориентировочно по табл. 2.4.

Таблица 2.4 – Определение прочности бетона в зависимости от сроков твердения

Бетонную смесь надо укладывать с уплотнением глубинными вибраторами. Шаг перестановки вибраторов не должен превышать 1,5R (R – радиус действия вибратора).

Радиус действия глубинного вибратора в среднем составляет 4–5 наружных диаметра вибронаконечника (у вибраторов ИВ-112 и ИС-476 этот диаметр составляет 51 и 76 мм соответственно).

Максимальное водоцементное отношение для обеспечения необходимой марки бетона по морозостойкости не должно превышать 0,45–0,50 при неагрессивной среде для частей фундамента, периодически подвергающихся увлажнению и высыханию (зоны переменного уровня воды в реке или промерзания).

Бетонируя конструкцию, надо отбирать серии бетонных образцов размерами 10×10×10 или 15×15×15 см (бетон конструкции и образцы формуют по одной технологии):

  • 1 серия – 3 образца для определения прочности перед загружением конструкции (выдерживают в условиях твердения бетона конструкции);
  • 2 серия – 6 образцов для определения прочности в 28-дневном возрасте и для определения марки бетона по водонепроницаемости (выдерживают в стандартных условиях);
  • 3 серия – 12 образцов для определения морозостойкостибетона (выдерживают в нормальных условиях).

Объем партии бетона, от которого берут образцы, – не более объема бетона конструкции, отформованного в течение одних суток, и не более 50 м 3 .

Уход за бетоном заключается в поддержании его во влажном состоянии и предохранении от резких перепадов температур (особенно в первые дни). Открытые поверхности свежеуложенного бетона после окончания бетонирования (в том числе и во время перерывов в укладке смеси) следует предохранять от испарения воды и попадания атмосферных осадков (например, укрывая пленкой). Для этого можно использовать армированные полимерные пленки, дорнит в 2–3 слоя и т. п. Поверхности надо защищать во время набора бетоном не менее 70% проектной прочности. Для нормального твердения бетона необходима температура около 20 °С и относительная влажность воздуха не менее 90%. В этих условиях через 7–14 суток бетон набирает 60 – 70% прочности (табл. 2.4).

Читать еще:  Какой стороной класть пароизоляцию к утеплителю на крыше?

Важно обеспечить температурный режим выдерживания бетона и его контроль. В массиве делают специальные скважины для измерения температуры. Данные измерений заносят в журнал контроля температуры.

Запрещается периодически поливать водой открытые поверхности твердеющих бетонных и железобетонных конструкций.

Движение людей по забетонированным конструкциям и установка опалубки вышележащих конструкций допускается по достижении бетоном прочности не менее 1,5 МПа.

Опалубку вертикальных поверхностей по СНиП 3.03.01-87 можно снимать после достижения бетоном прочности не менее 0,2-0,3 МПа (табл. 2,4).

Минимальная прочность бетона незагруженных монолитных горизонтальных конструкций, опирающихся всем контуром, при распалубке должна быть не менее 70% проектной для пролетов до 6 м и не менее 80% для пролетов более 6 м.

После возведения фундамента распорные крепления ограждения котлована удаляют. Вместо них (при необходимости, определенной расчетом) устанавливают коротыши между стенкой ограждения и фундаментом (прочность кладки должна быть не менее 5 МПа). После разборки опалубки и покрытия обмазочной гидроизоляцией поверхностей фундамента, которые будут соприкасаться с грунтом, производится послойная засыпка местным грунтом пазух между фундаментом и ограждением с трамбовкой каждого слоя.

Виды фундаментов неглубокого заложения

Во многих сферах строительства наиболее часто применяются фундаменты неглубокого заложения на естественном основании. К перспективному направлению их совершенствования можно отнести использование промежуточной подготовки переменной жёсткости в ленточных фундаментах. Другим направлением является использование рабочей боковой поверхности как ленточных, так и одиночных фундаментов. К таким фундаментам неглубокого заложения в связных маловлажных грунтах естественного сложения относятся щелевые, круглые, шлицевые, траншейные и одноплитные. Технология их устройства исключает обратную засыпку боковой поверхности и тем самым позволяет использовать боковое трение по их стенкам, чего нельзя достичь при устройстве в открытых котлованах столбчатых или ленточных фундаментов.

Опыт применения эффективных конструкций фундаментов неглубокого заложения на реальных объектах достаточно широк. Усовершенствованные технологии, внедряемые в строительную практику, предварительно испытывались как на моделях, так и на строительных площадках конкретных объектов в натуральную величину. Методика расчётов есть результат исследований, выполненных проектов фундаментов, запущенных в работу.

Для повышения экономической эффективности конструкций ленточных фундаментов необходимо уменьшение площади опорной монолитной ленты и снижение расхода металла при арматурных работах. Достигнуть этого позволяет применение подготовки переменной жёсткости(рис. 1, а). Подготовка представляет собой сплошной бетонный слой высотой 5-10 см, шириной 20-40 % от ширины подушки (ленты). По обе стороны промежуточной подготовки насыпается слой рыхлого песка такой же высоты. Подушка или монолитная лента устраиваются непосредственно на подготовке после набора прочности бетоном.

Данная конструкция фундамента передаёт начальную нагрузку на грунт основания через подошву бетонной подготовки. По мере нагружения фундамент дает усадку с одновременным уплотнением рыхлого грунта и при определённом значении нагрузки вся нижняя плоскость подошвы ленты вступает в работу. Происходит разгрузка консольных частей подушки (ленты). За счёт увеличения расчётного сопротивления грунта, появляется возможность уменьшить ширину, то есть площадь подушки (ленты). На фундаменте с промежуточной подготовкой в г. Кустанае возведен многоэтажный экспериментальный 144-квартйрный четырёхсекционный жилой дом, который нормально эксплуатируется. Детальное исследование и определение методики обеспечит широкое внедрение данной конструкции фундамента в строительной практике.

Щелевые фундаменты

К усовершенствованным фундаментам неглубокого заложения в связных маловлажных грунтах естественного сложения можно отнести также фундаменты с рабочей боковой поверхностью. Исключая из технологии обратную засыпку боковых поверхностей, мы используем боковое трение по стенкам, чего нельзя достичь при устройстве в открытых котлованах столбчатых или ленточных фундаментов. К таким фундаментам можно отнести щелевые, круглые, шлицевые, траншейные и одноплитные.

Достаточный объём проведенных исследований щелевых фундаментов показал их эффективность и простоту изготовления. Они представляют собой одну или две узкие бетонные (железобетонные) пластины в грунте, связанные ростверком для передачи нагрузки от надземных конструкций на сами пластины. Технология устройства заключается в нарезке баром (цепным или роторным щелерезом) узких щелей в грунте шириной 100 — 300 мм, глубиной от 1 до 3 м с последующим и заливкой бетонной смесью. Параметры щелевых фундаментов выбираются в зависимости от инженерно-геологических условий, значений расчётных нагрузок, типа и конструкции надземного сооружения. Применение щелевых фундаментов вместо ленточных на естественном основании целесообразно при отсутствии подвалов.

Особенность работы щелевых фундаментов заключается в следующем. Нагрузка на основа­ние при однощелевом фундаменте (рис. 1, б) кроме подошвы ростверка передаётся боковыми плоскостями и торцом стенки. В двухщелевом фундаменте (рис. 1, в) заключённый между пластинами массив грунта также включается в работу, тем самым основная нагрузка передаётся в плоскости на уровне нижних торцов стенок. Оптимальное расстояние между стенками, соответствующее максимальной несущей способности фундамента, составляет 0,6 — 1,3 м. Заключённое между стенками грунтовое ядро, пластины и ростверк можно рассматривать как бетоногрунтовый фундамент на естественном основании, по высоте равный высоте рабочих стенок. Рассматриваемые однощелевые фундаменты предназначены для одно-, двухэтажных коттеджей, дач, гаражей, двухщелевые — для жилых и общественных зданий высотой до 7-ми этажей, о чём свидетельствует практика проектирования и строительства на таких фундаментах.

Круглые фундаменты

Технология устройства круглых фундаментов глубиной до 3 м, диаметром 0,6 — 1,2 м аналогична технологии устройства буронабивных свай. Однако, к сваям их отнести нельзя, так как у них отношение длины (высоты) к диаметру l/d 5, что значительно превосходит число 10, по которому конструкцию относят к категории свай. Круглые фундаменты применяются под колонны железобетонных (рис. 1, г) и металлических (рис. 1, д) каркасов лёгких сооружений (заборов, складов, мастерских, гаражей, подсобных помещений). Как пример, можно привести круглые фундаменты, выполненные под неотапливаемые полносборные склады из профилированных стальных оцинкованных листов.

Одним из видов круглых являются фундаменты под опоры инженерных коммуникаций в виде железобетонных стоек, замоноличенных в буровых скважинах на всю их высоту. От забивных свай-опор они выгодно отличаются тем, что могут рихтоваться в плане и по высоте. Достигается это тем, что скважины выбуривают большего диаметра, чем сечение опор по диагонали (рис. 1, е). В случае перебуривания скважин в них до проектной отметки забоя засыпа­ется и утрамбовывается песчано-гравийная смесь, в результате чего образовывается малосжимаемая подушка. Полости между стенками скважин и гранями опор (стоек-колонн) заполняются на всю высоту бетоном и уплотняются глубинным вибратором. Таким образом, достигается высокая точность прокладки таких коммуникаций как шинопроводы, топливопроводы, теплотрассы, кабельные трассы, компенсаторные участки трубопроводов.

Описание рисунка 2: а – шлицевый фундамент под трёхшарнирную раму; б — то же под железобетонную колонну; в — траншейный фундамент двутавровой формы; г — траншейный фундамент под осветительную мачту; д — одноплитный поджелезобетонную колонну.

Шлицевые фундаменты

Шлицевые фундаменты устраиваются ковшом в коротких траншеях (шлицах) с овальной формой подошвы длиной до 3 м, шириной 0,4 — 1,0 м, глубиной заложения до 3 м. Для разработки щлицов используются экскаваторы, в том числе с зауженным ковшом. Также могут быть использованы штанговые напорные грейферы для устройства заглубленных сооружений и противофильтрационных завес способом «стена в грунте». При использовании грейфера размеры шлица в плане будут соответствовать его наружным габаритам при максимальном раскрытии челюстей. Шлам со дна шлица удаляется скребковым приспособлением, уплотняется плоской частью ковша или сомкнутым грейфером путём создания максимального давления на забой шлица. Шлиц бетонируется враспор (без опалубки) одновременно с выполнением гнезда (рис. 2, а) или стакана (рис. 2, б). Шлицевые фундаменты наиболее рациональны при значительных наклонных, моментных и горизонтальных нагрузках. Поэтому их лучше всего использовать под сельскохозяйственные здания из трёхшарнирных рам, а также под промышленные здания вспомогательного назначения каркасного типа с металлическим или железобетонным каркасом.

Траншейные фундаменты

Траншейные фундаменты бетонируются в траншеях шириной 0,3 — 1,2 ми вертикальными стенками глубиной до 3 мразличной конфигурации в плане: крестовые, тавровые, двутавровые (рис. 2, в). Вертикальность стенок фигурных конструкций обеспечивается обрамлением фундамента в плане узкими щелями баровым рабочим органом, особенно в мёрзлых и прочных грунтах. Технология устройства аналогична технологии шлицевых фундаментов. Например (рис. 2, г), под стальные осветительные мачты высотой 28 м в мёрзлых грунтах были применены траншейные фундаменты размерами в плане 5×4 м сложной конфигурации с шириной траншей 0,6 м и глубиной 2,0 м.

Одноплитные фундаменты

Усовершенствованной конструкцией столбчатых фундаментов на естественном основании являются одноплитные фундаменты ( рис. 2, д). Их суть состоит в нарезке приямка прямоугольной или квадратной формы, с вырезами или срезами глубиной равной высоте плиты. Дно подчищается вручную, после чего приямок (плита) армируется и бетонируется. Вырезы и срезы в плитах служат для сокращения расхода материала и ослабления концентрации напряжений в грунтах основания. Для обеспечения арочного эффекта в местах прямоугольных вырезов их площадь не должна превышать 15 — 20 % площади плиты.

Приведенные конструкции фундаментов до настоящего времени нормально эксплуатируются, что позволяет сделать вывод о их надёжности. Опробованную методику расчёта несущей способности рабочей боковой поверхности фундаментов неглубокого заложения можно рекомендовать к применению с дальнейшим усовершенствованием. Суть её заклю­чается в следующем:

Нагрузку, воспринимаемую боковыми поверхностями описанных конструкций фундаментов, можно определить по формуле:

Т = m Ʃmf ui fi li ,

где m— коэффициент работы бетонной поверхности фундамента в грунте, принимаемый равным 0,9;

mf— коэффициент условий работы грунта по боковой поверхности фундамента, принимаемый для суглинков и супесей равным 0,7; для глин — 0,6 при устройстве фундаментов в летний период 0,5 и соответственно 0,4 — в зимний;

ui— периметр поперечного сечения фундамента или щелевой стенки (траншеи) на глубине hhм;

li— толщина i-го слоя грунта, соприкасающегося с боковой поверхностью фундамента (стенки, траншеи), м;

fi— расчётное сопротивление i-го слоя грунта по боковой поверхности фундамента, определяемое по табл. 1.

Читать еще:  Слой пароизоляции в конструкции стены располагается

Расчётное сопротивление грунта по боковой поверхности фундамента

Глубина расположения слоя грунта от планиро­вочной отметки hi, м

Расчётное сопротивление грунта по боковой бетонной поверхности фундамента fi,кПа, при показателе текучести грунта IL, равном

Столбчатый фундамент из бетона

Под определенное сооружение (например, дом) предполагается обустройство конкретного фундамента. Столбчатые основания относятся к самым дешевым и простым в строительстве. Чаще на таком фундаменте сооружают малоэтажные производственные и общественные здания, одноэтажные загородные постройки. Ряд особенностей опорных фундаментов предполагает некоторые ограничения в их применении, которые нельзя не учитывать.

Что такое столбчатый фундамент?

Такой тип основания для дома конструируется из опорного каркаса, где колоды несут основную нагрузку. Опоры монтируются по периметру под несущими стенами. На них укладывается первая обвязка дома. Следовательно, установка колод осуществляется в нагружаемых местах: в углах, на стыке стен, под перекрытиями и пролетами более 2,5 метра в длину.

Размеры и расстояние между столбами определяются расчетным путем, учитывая категорию стройматериала, тип конструкции опорных элементов, характер и общую массу постройки. Среднее расстояние между опорами варьируется в пределах 1,5—2,5 м, внутренний срез прямоугольных изделий составляет 25—40 х 25—40 см, круглых — 20—25 см. Высота наземного элемента конструкции над фундаментом не должна превышать 50 см. Этот параметр для части, распложенной под землей, подбирается в зависимости от величины заглубления.

Особенности

Опоры столбчатого основания следует располагать так, чтобы столбы упирались в устойчивый и прочный земляной слой. Не допускается размещение опорных колод на мягкие гумусные почвы. Верхняя часть колод делается в одной горизонтальной плоскости. На них будет опираться ростверк.

При возведении легких построек ростверк не нужен. Вместо него используют металлические или деревянные балки. Возвышение оголовков должно располагаться минимум на полметра выше над землей. Это позволит избежать проникновения влаги в дом.

Если предполагается соединение колонны со столбом, в верхней его части делают углубление «стакан» или устанавливают крепежные анкера для обеспечения жесткого крепления опоры и опираемой конструкции.

Особенности обустройства опираемых фундаментов и выбор типа колод определяются видом постройки, характером грунта и прочими эксплуатационными требованиями. Колоды бывают разных размеров и сечений. Встречаются прямоугольные, квадратные, круглые опоры.

Столбики могут быть выполнены из бетона (железобетона), бутобетона, блочного материала, бутового камня, кирпича. Согласно применяемой технологии изготовления, фундаменты на колодах классифицируют на такие типы, как:

  • монолитные, когда роются ямы, монтируется опалубка и послойно заливается бетонный раствор марки не ниже М400;
  • сборные, когда используются готовые элементы из блоков, кирпича или камней определенной марки.

Схема устройства столбчатого фундамента.

Глубина заложения определяет отдельные виды опорных оснований:

  1. Незаглубленные фундаменты на столбах, когда подошва располагается на земле или песчаной подушке. Отличаются такие основы экономичностью возведения, но используются исключительно для строительства одноэтажных зданий из легких материалов на слабо- и непучинистых почвах.
  2. Заглубленные основы, при сооружении которых столбики закладываются на глубину до или ниже точки промерзания грунта. Такую конструкцию используют на пучинистых грунтах с суглинками или глинами. Отличаются наименьшей экономичностью.
  3. Мелкозаглубленные, глубина заложения которых составляет 0,5 – 0,7 части глубины от точки промерзания почвы. Половина фундамента — монолит определенной формы, а вторая — подушка из песка и гравия. Пригодны для обустройства на мало- и неглинистых землях.

По конструкционным особенностям фундаменты бывают с крепежной балкой или без нее. Ростверк крепится к столбу и распределяет нагрузку от общей массы дома равномерно по основанию. Ростверковые балки препятствуют опрокидыванию колод из-за горизонтального движения почвы. Однако этот элемент существенно удорожает строительство, увеличивает время обустройства фундамента.

Большинство немассивных зданий возводят на опорных фундаментах без ростверка. В этом случае первая обвязка монтируется прямо на колодах, сверху гидроизоляционного слоя. Однако эта конструкция отличается меньшей устойчивостью к горизонтальным сдвигам почвы и опрокидывающим нагрузкам.

Целесообразность возведения

Целесообразность возведения фундаментов на опорах имеет место, в случаях когда:

  • на земляной слой при эксплуатации здания давление от колод меньше, чем от ленточной конструкции;
  • возводятся постройки без подвалов на щитовых, деревянных и облегченных каркасах;
  • строятся стены из кирпича с требуемой глубиной заложения опоры до двух метров или на четверть метра ниже точки промерзания почвы;
  • нужно избежать разрушения фундамента из-за увеличения объемов грунта при низких температурах.

Однако есть случаи, когда применение опираемых основ не оправдано:

  1. Из-за неустойчивости опорных колод не рекомендуется их установка на слабые и горизонтально-подвижные почвы.
  2. Основания на колодах непригодны для возведения массивных стен из тяжелых материалов: кирпич, железобетон с толщиной блоков более 51 см.
  3. Не стоит устраивать фундамент на столбах в местах с сильным перепадом высот (от двух метров).

Вернуться к оглавлению

Строительство

Заливка столбов к фундаменту осуществляется открытым способом в несколько этапов. На первом этапе осуществляется разметка положения опор под фундаментные блоки или монолит. Для этого изначально выбирается вид, форма, размер и глубины заложения опорных колод. Возведение здания по чертежу предполагает внесение в документ предварительно определенного четкого расстояния между опорами.

При самостоятельной разметке на месте строительства следует учитывать факт, что столбы должны находиться от 1,5 до 2,5 метра друг от друга. Большее расстояние может привести к увеличению строительных затрат из-за необходимости сооружать более мощный ростверк. Опоры должны находиться в зонах максимальных нагрузок — в углах, на стыке стен, под перекрытиями.

На втором этапе осуществляются работы по грунту. Роются ямы под прямоугольные бутовые, бетонные, бутобетонные, блочные или кирпичные столбы. Если внизу столб должен иметь подошву, то при рытье ямы учитываются его габариты. Для трубчатых опор нужно подготовить скважины. Бурятся они буровыми машинами, ручным или садовым буром. Скважину следует делать сечением на 5—10 см больше диаметра опорной трубы.

На третьем этапе осуществляется бетонирование столбов. Чаще в качестве опор применяют железобетонные монолиты требуемого сечения. Соорудить монолитные столбы можно самостоятельно. Для этого в подготовленной яме укладывают подушку из песка и гравия высотой 15—20 см. Для возведения надземной части опоры над ямами сооружается опалубка из деревянных досок в соответствии с требуемыми размерами столбов. Опалубочные доски и внутренние стены ямы покрываются рубероидом или полиэтиленом для обеспечения гидроизоляции.

Затем в яму помещается армирующий каркас из прутьев сечением 1—1,2 см. Стержни между собой соединяются отрезками из той же арматуры. Можно использовать для этих целей специальные хомуты из вязальной проволоки. Расстояние между армирующей сеткой и стенками опоры не должно быть менее 3 см. Это позволит полностью залить каркас бетоном.

Высота армирующего скелета зависит от применения или отказа от укрепляющей балки (ростверка). Если установка элемента требуется, тогда длина арматуры должна возвышаться над верхним основанием опоры. В противном случае армирующий скелет располагается ниже опалубки на 3 см. Для крепления первой обвязки сверху столба монтируются закладные шпильки.

Заливаются столбы обычным бетоном марки не ниже М-200.

После армирования проводится бетонирование опор. Для этого используется готовый бетон не ниже марки 200—300. Для самостоятельного приготовления бетонных смесей больше подходит марка цемента М400, смешиваемого с песком 1—1,2 мм, гравием и водой в соотношении 1 : 3 : 5 : 0,4, соответственно. Смесь укладывается слоями, каждый из которых тщательно трамбуется вибратором.

При устройстве фундамента на опорах с башмаком (расширением внизу) яму роют в форме этого расширения, засыпают подушку из песка и гравия, заливают бетон. После укрепления заливки формируют опалубку столба. Затем повторяются вышеописанные работы. После затвердения смеси опалубку можно удалить, стенки столба обработать гидроизоляцией и обратно засыпать и утрамбовать грунт, вынутый из ямы.

Если используется ростверк, на последнем этапе выполняется его устройство на опорах. Для этого по периметру будущего фундаментного основания горизонтально монтируется опалубка в форме желоба для связки всех колод. Внутрь опалубки вкладывается каркас из арматуры и закрепляется на выпусках укрепляющего скелета столбов. Заливка цементного раствора осуществляется так, чтобы поверхность ростверка была расположена в одной горизонтальной плоскости.

В течение недели бетону нужно укрепиться и затвердеть, после чего опалубка снимается.

Заключение

Фундаментам на опорах свойственны многочисленные преимущества. Они отличаются надежностью, экономичностью, быстротой возведения из-за отсутствия необходимости в проведении дополнительных работ.

Такие основания можно устанавливать на промерзающие грунты. Однако они не подходят для возведения массивных домов с подвалами.

Сайт о фундаментах, их основаниях и морозном пучении грунтов

Незаглубленные и малозаглубленные фундаменты

  • Home
  • Все о фундаментах
  • Незаглубленные и малозаглубленные фундаменты

Основные особенности и тонкости поверхностных фундаментов

Оглавление

1. Основные положения

Хотя нормы проектирования фундаментов гласят что глубина заложения фундамента в пучинистых грунтах должна быть больше глубины промерзания такое решение устраняет только лобовые силы морозного пучения, но не устраняет касательные силы пучения на боковой поверхности, которые так же очень велики и нагрузка от легкого малоэтажного здания не может им противостоять. А в северных регионах РФ нормативная глубина промерзания меняется в пределах от 1,5 до 3,0 м. и более. В такой ситуации следует рассмотреть вариант поверхностного фундамента.

Малозаглубленный или поверхностный фундамент является одним из наиболее простых и экономичных вариантов для легких зданий и сооружений – это минимальные затраты на материалы и почти полное отсутствие земляных работ. Но при своей кажущейся простоте этот тип фундаментов имеет особенности, которые необходимо учитывать, как на этапе проектирования, так и на этапе строительства.

К малозаглубленным фундаментам относят все типы фундаментов если глубина заложения их подошвы не превышает нормативной глубины промерзания пучинистого грунта основания, то есть фундаменты полностью расположены в зоне сезонного промерзания/оттаивания грунтов

В данной статье рассматриваются только поверхностные и практически незаглубленные фундаменты (глубина не более 20 см), т.к. если фундаменты заглублены, но менее глубины промерзания то они будут накапливать деформации пучения год за годом не полностью возвращаясь в исходное положение после оттаивания грунта, и их применение абсолютно не обоснованно. Если же фундамент все таки имеет некоторое заглубление то необходимо выполнять засыпку пазух котлована достаточной ширины непучинистым материалом (песок средний и крупный, ПГС. Ширина пазухи должна быть не менее глубины заложения фундамента) и предусматривать мероприятия, обеспечивающие проскальзывание фундамента относительно грунта по боковой поверхности чтобы обеспечить свободное оседание фундамента после подъема морозным пучением.

Читать еще:  Технология утепления фасада пенопластом под штукатурку

Поверхностные и малозаглубленные фундаменты имеет смысл использовать при строительстве малоэтажных сооружений, дач, гаражей, хозяйственных построек, бань и т.д. Их можно использовать при возведении срубов из бревен или стен из ячеистых бетонов, при возведении каркасно-щитовых домов. Естественно применение ограничено зданиями без подвала.

Не рекомендуется применение малозаглубленных и поверхностных фундаментов под кирпичные дома т.к. стены из кирпича и других каменных материалов очень чувствительны к деформациям фундамента и при малейшем смещении дают трещины (армированная кладка более устойчива, но все равно очень хрупка). Так же не следует применять их для двух- и более этажных построек из-за большой нагрузки на основание и фундамент, а несущая способность их часто сильно ограничена.

Согласно примечанию к п. 6.8.10 СП 22.13330.2016 Малозаглубленные фундаменты допускается применять для сооружения пониженного уровня ответственности и малоэтажных зданий при нормативной глубине промерзания не более 1,7 м. А, например, в Руководстве п.4.22 говорится что глубина промерзания под подошвой малозаглубленного фундамента должна быть не более 1,0 метра, а под подошвой заглубленного не более 0,5 м.

Нормативные требования к малозаглубленным фундаментам приведены в разделе 8 СП 22.13330.2016 «Особенности проектирования оснований и фундаментов малоэтажных зданий» который можно скачать в разделе НОРМАТИВЫ по этой ссылке. Данный раздел обязателен к прочтению если вы планируете применять такие фундаменты.

Согласно п. 8.6 СП 22.13330.2016 при проектировании малозаглубленных фундаментов на пучинистых грунтах обязательно выполнение проверочных расчетов на деформации пучения (на подъем фундаментов).

2. Типы поверхностных фундаментов

Малозаглубленные и поверхностные фундаменты могут быть следующих типов:

  • Ленточные;
  • Столбчатые (к ним так же относятся и «сваи» малой глубины погружения (менее глубины промерзания грунта). На самом деле это не сваи, а отдельные столбчатые фундаменты т.к. настоящая свая по определению имеет глубину погружения не менее 4,0 метра);
  • Плитные;

Любой из этих типов фундаментов будет относиться к малозаглубленным если его подошва залегает выше нормативной глубины промерзания пучинистого грунта основания. Если же грунт основания не пучинистый то данная классификация не имеет особого значения.

Для определения характеристик грунтов основания следует обратиться в специализированные изыскательские организации или на крайний случай воспользоваться указаниями этой статьи.

Максимальная несущая способность, естественно, будет присуща плитному варианту из-за большой площади опирания на грунт, как и максимальная стоимость и трудоемкость.

Достаточной несущей способностью обладают ленточные фундаменты (при правильном проектировании). Имеются ввиду монолитные непрерывные ленты из армированного железобетона, или ленты из крупных блоков с монолитным армированным поясом по верху и монолитной подошвенной плитой. Ленты из блоков ФБС без дополнительных мероприятий не обеспечивают необходимой прочности и жесткости.

Столбчатые малозаглубленные фундаменты на пучинистых грунтах следует применять только в сочетании с монолитной сплошной рамой (как правило железобетонной системой перекрестных балок), объединяющей их в единое целое, или же под совсем неответственные сооружения без общей жесткой рамы (сараи, кладовки, веранды, беседки и др. сооружения III уровня ответственности). В целом их применение очень ограничено и не рекомендуется под более-менее ответственные сооружения.

Подробно все типы фундаментов и их особенности разобраны в этой статье.

3. Особенности и возможные проблемы малозаглубленных фундаментов

  1. Основная особенность малозаглубленных и поверхностных фундаментов заключается в том, что на них действуют лобовые силы морозного пучения. А учитывая, что такие фундаменты как правило используются под легкие сооружения нагрузка на грунт под ними мала и никак не может противостоять огромным силам поднятия вспучивающегося грунта, можно смело утверждать что при промерзании грунта фундамент будет двигаться, смещаться по вертикали – то есть «гулять». Этот негативный эффект можно снизить за счет утепления грунта, но полностью устранить очень сложно.

Но огромным плюсом поверхностных и практически незаглубленных фундаментов является то что они после оттаивания грунтов возвращаются в исходное положение, не накапливая деформаций пучения.

  1. Следующая особенность проистекает из первой – т.к. фундамент, а вместе с ним и здание смещаются по вертикали от морозного пучения то примыкающие к нему снаружи лестницы, крыльца, пристройки должны быть приспособлены к таким смещениям.

  1. В летний период (то есть в не замерзшем состоянии) слои грунта, близкие к поверхности, имеют намного более низкую несущую способность чем залегающие на глубине (это явление объясняется в статье в подразделе «4. Зависимость глубины заложения фундамента от прочности грунтов основания и нагрузки на фундамент»), поэтому следует тщательно проверять расчетами несущую способность основания и, при необходимости, увеличивать его площадь, глубину заложения или другие мероприятия.
  2. Как правило фундамент имеет достаточно большую высоту над уровнем планировки грунта. Связано это с тем что ему необходимо придать достаточно большую жесткость и прочность, для этого нужна

4. Поведение малозаглубленных фундаментов при воздействии морозного пучения

Практически всегда промерзающий грунт поднимается неравномерно (причины описаны в статье физика процесса пучения). Неравномерное пучение воздействует на малозаглубленный фундамент вызывая:

  1. Если фундамент сплошной и достаточно прочный для восприятия нагрузок от здания после неравномерного подъема промерзающего грунта, то он поднимается и испытывает крены, но остается практически неизменным по форме, т.е. верхняя плоскость фундамента остается плоской, хотя и наклоняется или смещается по вертикали (конечно фактически поверхность ограниченно изгибается в зависимости от жесткости фундамента). Весной, после полного оттаивания грунта фундамент вернется в исходное положение восстановив свою изначальную форму.
  2. Если прочности фундамента недостаточно, то фундамент разрушается – появляются широкие трещины и сколы бетона. После оттаивания грунта форма фундамента не будет восстановлена полностью.

5. Что следует учитывать при проектировании и строительстве малозаглубленных фундаментов

Для начала следует изучить документы:

Учтите при проектировании следующие основные моменты:

  1. Чтобы перемещения фундамента от морозного пучения не вызывали повреждений надземной части здания (трещины в стенах, лопнувшие стекла) и вообще не вызывали никаких проблем в дальнейшем (заклинившие двери, перекошенные крыльца и др.) фундамент должен быть сплошным, непрерывным под все здание, а лучше и под крыльца, и иметь достаточную жесткость и прочность чтобы сохранить свою первоначальную форму и не сломаться при неравномерном поднятии промерзающего грунта. Для обеспечения необходимой прочности и жесткости необходимо выполнять расчеты фундамента и армирования с учетом неравномерного смещения основания. Расчеты лучше выполнять на разные варианты неравномерного смещения основания в конечно-элементной программе (например SCAD или др.), вручную расчёты выполнять будет значительно сложнее (особенно для плитных и сложных по форме ленточных фундаментов).
  1. Следует учитывать наличие почвенно-растительного слоя – если фундамент опереть на органический плодородный грунт, то в результате разложения органики гарантированы большие осадки фундамента, растянутые во времени. Кроме того, почвенно-растительный слой обладает очень низкой несущей способностью и не может служить несущим основанием. Данный слабый слой необходимо полностью заменять, как правило, на песчаную подушку.
  2. Следует учитывать низкую несущую способность верхних слоев грунта. Слои грунта, близкие к поверхности, имеют намного более низкую несущую способность чем залегающие на глубине, поэтому следует тщательно проверять расчетами несущую способность основания и, при необходимости, увеличивать его площадь, глубину заложения или другие мероприятия.
  3. Крыльца, наружные лестницы и другие части здания, опертые на отдельные фундаменты, должны иметь подвижные крепления к основному сооружению, позволяющие взаимные перемещения до 10 см и более (зависит от степени пучинистости грунта и глубины промерзания) или вообще быть независимыми от основного здания.
  4. Следует предусмотреть мероприятия для снижения воздействия морозного пучения на фундаменты. Например утепление отмостки, боковых поверхностей фундамента, грунта под зданием (для отапливаемых зданий применять минимальное утепление чтобы тепло могло частично проникать в грунт). Это позволит уменьшить глубину промерзания грунта под подошвой фундамента и вблизи него, особенно эффективно для отапливаемых зданий.

6. Снижение воздействия морозного пучения на поверхностные фундаменты

Для снижения воздействия пучения на поверхностные фундаменты применяют следующие мероприятия:

  • Замена части пучинистого грунта под фундаментом на непучинистый (песок крупный или средней крупности, щебень, гравий, ПГС, и др.);
  • Устройство фундаментов на локально уплотненном основании (в вытрамбованных/выштампованных котлованах, траншеях, фундаменты из забивных блоков) — см. ТСН МФ-97 МО «Проектирование, расчет и устройство мелкозаглубленных фундаментов малоэтажных жилых зданий в Московской области»
  • Применение утепленной отмостки по периметру здания. Более подходит для отапливаемых зданий с полами по грунту;
  • Устройство дренажа по периметру здания, общее водопонижение на участке;
  • Введение в грунт противопучинистых компонентов.

Дополнительно о мерах борьбы с морозным пучением см. эту статью.

7. Примеры конструктивных решений мелкозаглубленных фундаментов

Еще раз повторюсь — хотя здесь и говорится о малозаглубленных фундаментах под кирпичные здания, применение таких решений очень опасно, а последствия неравномерных деформаций грунта устранить без демонтажа стен невозможно.

8. Заключение

Поверхностные (малозаглубленные) фундаменты имеют свою достаточно узкую область применения. Основной их недостаток — это подверженность морозному пучению и смещениям по высоте в зимний период. Основным их достоинством помимо простоты и низкой стоимости является то что о наличии деформаций пучения известно заранее и эти деформации точно будут обратимыми, а не накапливаться год от года.

При проектировании и строительстве таких фундаментов следует учитывать многие их особенности, выполнять детальные расчеты, продумывать множество деталей, связанных с подвижностью фундамента, а значит и всего здания/сооружения.

Ссылка на основную публикацию
Adblock
detector