Общие сведения об основаниях и фундаментах основные понятия и определения

Общие сведения о фундаментах

Фундаменты — это часть здания, расположенная ниже отметки дневной поверхности грунта. Их назначение – передать все нагрузки от здания на грунт основания. В случаях, когда под зданием устраивают подвалы, фундаменты выполняют роль ограждающих конструкций подвальных помещений.

Работа фундаментов протекает в сложных условиях. Они подвергаются влиянию разнообразных внешних воздействий, как силовых, так и несиловых. Силовые воздействия: нагрузки от массы здания и грунта, отпор грунта, силы пучения, сейсмические удары, вибрация – вызывают появление различного вида напряжений, результатом которых могут быть недопустимые деформации и разрушения. Несиловые воздействия: переменные температура и влажность, избыточное увлажнение, воздействие химических веществ, деятельность грибков и бактерий – могут привести как к появлению напряжений и разрушений в фундаментах, так и к нарушению эксплуатационного режима помещений зданий.

Чтобы противостоять различного рода воздействиям и обеспечить необходимые условия эксплуатации здания, фундаменты должны быть прочными, долговечными, устойчивыми, стойкими к воздействию грунтовых вод, химической и биологической агрессии.

Разнообразие материалов и конструктивных решений зданий, климатических и грунтовых условий определило множество различных видов фундаментов, используемых в современном строительстве.

Фундаменты классифицируют по конструктивным схемам, материалу, характеру работы, глубине заложения и способу возведения.

По конструктивной схеме фундаменты различают ленточные, отдельностоящие (столбчатые), свайные и сплошные (рис.1, 2).

Рис. 1. Конструктивные схемы фундаментов жилых зданий:
а – ленточный монолитный, фрагмент плана и разрез; б – свайные с монолитным
ростверком; в – столбчатые под несущие стены; г – столбчатые для каркасного здания

Рис. 2. Плитные фундаменты:
а – ребрами вверх; в – коробчатый; г – из перекрестных лент
в каркасных зданиях

Ленточные фундаменты представляют собой заглубленные в грунт ленты-стенки, располагаемые под всеми несущими и самонесущими стенами (см. рис.1а).

Отдельностоящие фундаменты представляют собой отдельные опоры, установленными под колонны каркасных зданий. Разновидностью отдельностоящих фундаментов являются столбчатые, которые проектируют под стены малоэтажных зданий при малых нагрузках и прочных основаниях, когда ленточные фундаменты нерациональны (см. рис.1, в и г).

Сплошные фундаменты устраиваются в виде массивной плиты под все здание. Сплошные фундаменты применяют для зданий с большими нагрузками или при слабых и неоднородных основаниях (см. рис.2).

Свайные фундаменты выполняются в виде отдельных стержней, погруженных а грунт. Применяют на слабых сжимаемых грунтах, при глубоком залегании прочных материковых пород, больших нагрузках и т. д. В последнее время свайные фундаменты получили широкое распространение для обычных оснований, так как их применение дает значительную экономию объемов земляных работ и затрат бетона (см. рис.1б).

Материалом для фундаментов могут служить природный камень (бут), бутобетон, бетон, железобетон.

В современных условиях все реже применяют фундаменты из бута. Устройство таких фундаментов трудоемко. Несколько проще устройство бутобетонных фундаментов. Их возводят в опалубке, включая в бетон 25-35 % бута. Бетон и железобетон в наибольшей степени отвечают требованиям, предъявляемым к материалам для фундаментов: морозостойкости, механической прочности, стойкости к агрессивным водам, биостойкости и т. д.

По характеру работы конструкции фундаменты могут быть жесткие, работающие только· на сжатие, и гибкие, конструкции которых рассчитаны на восприятие сжимающих и растягивающих усилий. Применение железобетонных фундаментов позволяет резко снизить затраты бетона, но резко увеличивает расход металла.

Важнейшим параметром, от которого зависит объем фундаментов, является глубина его заложения, т. е. расстояние от подошвы фундамента до дневной поверхности грунта. Подошва фундамента – это нижняя плоскость фундамента, опирающаяся на основание. По глубине заложения различают фундаменты мелкого заложения (до 5 м) и глубокого (более 5 м).

Глубина заложения фундаментов зависит от многих факторов. Однако, в первую очередь, на заглубление будет влиять наличие подвала, качество грунтов основания, уровень грунтовых вод и промерзание грунта.

Для внутренних стен и колонн отапливаемых зданий глубину заложения фундаментов можно назначить независимо от расчетной глубины промерзания, если в период строительства грунты основания будут защищены от увлажнения и промерзания.

Для всех остальных случаев глубина заложения фундаментов должна быть ниже расчетной глубины промерзания.

При разной глубине заложения фундаментов под стенами одного и того же здания переход от одной глубины заложения к другой следует производить постепенно, уступами. Высоту и длину уступов принимают в зависимости от плотности грунтов.

Тема 3.1. Общие сведения об основаниях и фундаментах.

3.1.1. Виды оснований и требования к ним.

Всякое инженерное сооружение опирается на землю и передает ей давление от собственного своего веса и действующих на него нагрузок. Для передачи и распределения этого давления на грунт устраивают фундамент, служащий опорным элементом сооружения.

Основанием называют толщу грунта, воспринимающую давление от собственного веса, временной нагрузки и передаваемое фундаментом сооружения.

Основания могут быть естественными и искусственными. Если фундамент возводится на грунте с сохранением его природных качеств, то такое основание называется естественным. Если грунты перед возведением фундамента укрепляют тем или иным способом, то основание называется искусственным.

Основания транспортных сооружений должны проектироваться на основе:

а) результатов инженерно-геодезических, инженерно-геологических и инженерно-гидрометеорологических изысканий для строительства;

б) данных, характеризующих назначение, конструктивные и технологические особенности сооружения, нагрузки, действующие на фундаменты, и условия его эксплуатации;

в) технико-экономического сравнения возможных вариантов проектных решений (с оценкой по приведенным затратам) для принятия варианта, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов или других подземных конструкций.

При проектировании оснований и фундаментов следует учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических и гидрогеологических условиях.

Проектирование оснований включает обоснованный расчетом выбор:

типа основания (естественное или искусственное);

типа, конструкции, материала и размеров фундаментов (мелкого или глубокого заложения; ленточные, столбчатые, плитные и др.; железобетонные, бетонные, буробетонные и др.);

Основания должны рассчитываться по двум группам предельных состояний: первой — по несущей способности и второй — по деформациям.

3.1.2. Грунты как естественное основание.

Так как поверхностные слои грунтов обычно имеют небольшую несущую способность и периодически подвергаются промерзанию, оттаиванию и размыву протекающими водами, то фундамент, как правило, заглубляют до более прочных слоев грунта. Толщу грунта, воспринимающую давление, передаваемое фундаментом сооружения, называют основанием. Несущая способность грунтов основания зависит от их структуры и физических свойств. Большое влияние на качество грунтов как основания инженерных сооружений оказывают гидрологические условия в месте строительства, а также методы производства работ по устройству фундаментов сооружения.

Грунты, которые могут служить основанием инженерных сооружений, разделяются на: скальные, крупнообломочные, песчаные и глинистые.

Крупнообломочные грунты состоят из несвязанных между собой обломков горных пород угловатых неокатанных (щебень, дресва) или окатанных (галька, гравий). В щебне и гальке большую половину (по массе) составляют частицы размером более 10 мм; в дресве и гравии таких частиц менее половины. Крупнообломочные породы имеют большую несущую способность, водопроницаемы, малосжимаемы и обычно служат хорошим основанием сооружений.

Скальные грунты (граниты, песчаники, известняки и др.) в большинстве случаев имеют большую прочность и при достаточной мощности пластов обычно служат надежным основанием для сооружений. Некоторые скальные породы, как гипс и слабый известняк, могут растворяться проникающей к ним водой. В результате этого образуются пустоты, называемые карстами, которые опасны для строящихся сооружений.

Читать еще:  Как соединить гофрированные трубы из нержавейки диаметром 150мм?

Песчаные грунты состоят из зерен размером менее 2 мм. В зависимости от содержания зерен разной крупности различают: гравелистые, крупные, средние, мелкие и пылеватые пески. Гравелистые пески имеют (по массе) более 25% частиц крупнее 2 мм, крупные — более 50% частиц крупнее 0,5 мм, средние — более 50% частиц крупнее 0,25 мм, мелкие — более 75% частиц крупнее 0,1 мм и пылеватые — менее 75% частиц крупнее 0,1 мм. Несущая способность песчаного грунта тем больше, чем крупнее и шероховатее его зерна и чем он плотнее. Увлажнение уменьшает несущую способность песков. Насыщенные водой мелкие пески превращаются в плывуны. Песчаные грунты имеют хорошую несущую способность. Под нагрузкой они уплотняются за счет уменьшения объема пор и отжатия из них воды. Появившиеся осадки довольно быстро прекращаются.

Глинистые грунты содержат мельчайшие частицы (менее 0,005 мм), придающие глинам пластичность. В зависимости от содержания таких частиц различают супеси (3-10% по массе), суглинки (10-30%) и глины (более 30%). В глинистых грунтах наблюдается не только трение между их частицами, но и сцепление. В глинистых грунтах, кроме свободной воды, содержится также связанная вода в виде пленок, покрывающих частицы. Сухие плотные глинистые грунты имеют высокую несущую способность. С увеличением влажности грунт набухает, переходя из твердой консистенции в пластичную. При этом его несущая способность уменьшается. Под нагрузкой глинистые грунты дают длительные осадки тем большие, чем больше влажность грунта.

Основными параметрами механических свойств грунтов, определяющими несущую способность оснований и их деформации, являются прочностные и деформационные характеристики грунтов (угол внутреннего трения j, удельное сцепление с, модуль деформации грунтов Е, предел прочности на одноосное сжатие скальных грунтов Rc и т.п.).

Осадки основания безопасны для сооружений, если давление, передаваемое грунту, не превышает величин, называемых расчетным сопротивлением грунта.

Расчетное сопротивление грунта (кроме скальных), характеризующее их несущую способность, зависит от глубины залегания слоя грунта, размеров фундамента в плане. Чем глубже заложен данный слой грунта, тем он плотнее и несущая способность его больше.

Расчетные сопротивления грунтов зависят от их вида и физико-механических качеств и выражаются в кг/см². Для скальных грунтов расчетное сопротивление зависит от предела прочности образцов на сжатие. Для крупнообломочных грунтов (каменистый, щебенистый, галечный, гравийный) от их породы. Для песчаных и глинистых от их плотности, влажности и пористости.

Характеристики грунтов природного сложения, а также искусственного происхождения, должны определяться, как правило, на основе их непосредственных испытаний в полевых или лабораторных условиях с учетом возможного изменения влажности грунтов в процессе строительства и эксплуатации сооружений.

3.1.3. Способы получения искусственных оснований.

Грунт, имеющий недостаточную прочность и высокую сжимаемость, в основании сооружения может быть заменен песчаной или гравийной подушкой. Есть еще способ поверхностного уплотнения грунтов. Уплотнение глинистых грунтов на глубину до 40-45см может быть произведено с помощью катков различных систем, виброплит или способом трамбования.

При силикатизации в качестве основного вяжущего используется натриевое жидкое стекло, которое затвердевая цементирует грунтовые частицы превращая закрепляемый грунт в прочный и водонепроницаемый массив.

Следующий способ – закрепление сухих и водонасыщенных песчаных грунтов с помощью карбамидной смолы. В результате взаимодействия раствора карбамидной смолы и соляной кислоты образуется гель, который связывает частицы песка в прочный монолит.

Цементацию применяют в скальных трещиноватых породах с целью уменьшения их водонепроницаемости и укрепления. Цементный раствор заполняет трещины и пустоты в скале, что придает монолитность породе.

Существуют также методы глинизации, битумизации грунтов, укрепление глинистых грунтов с помощью электротока (электроосушение), обжиг грунтов, искусственное замораживание грунтов.

Вопросы для самоконтроля:

1. Что такое основание, и какими они бывают?

2. Виды грунтов в основании транспортных сооружений.

3. Способы укрепления грунтов.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Общие сведения об основаниях и фундаментах основные понятия и определения

Основания и фундаменты

Фундамент – основа здания, предназначенная для равномерного распределения нагрузки на грунт.

Основанием для фундамента является грунт на строительном участке. Идеальным является однородный минеральный грунт, не содержащий торфа и глины (но такие грунты встречаются довольно редко).

Существует четыре основных типа грунта:

• скальные и обломочные грунты;
• песчаные грунты с крупнозернистым песком;
• мелкозернистые и пылеватые пески;
• глинистые грунты.

Основания под фундаменты могут быть пучинистыми и непучинистыми.


Пучинистые — это основания, с высоким уровнем залегания грунтовых вод, подверженные деформации под воздействием ливневых дождей и морозов.


Непучинистые
основания представляют собой однородную породу и практически не деформируются.

К непучинистым основаниям относятся скальные и песчаные грунты с крупнозернистым песком (строения на них более устойчивые). В скальных породах сложно вести строительные работы, песчаные же грунты плохо подходят для многоэтажных массивных зданий, они требуют дополнительного укрепления и устройства фундамента глубокого заглубления.

Мелкозернистые и пылеватые пески, а также глинистые грунты требуют укрепления перед началом строительства, а также создания глубокозаглубленных фундаментов.

Типы фундаментов

В строительной практике используется много разновидностей фундаментов. Они классифицируются по нескольким признакам.

По материалу их разделяют на:

• бутовые фундаменты (из бутового камня обычно на цементном растворе);
• бутобетонные фундаменты (бетон с дополнительным заполнением бутовыми камнями);
• бетонные фундаменты;
• железобетонные фундаменты;
• деревянные фундаменты (деревянные сваи или закопанные стойки);
• металлические фундаменты (как правило, сваи).

В настоящее время почти все фундаменты выполняется из бетона и железобетона. Они практически вытеснили трудоемкие бутовые и бутобетонные фундаменты. Металлические фундаменты (сваи) применяются очень редко, в основном для уникальных сооружений.

По технологии изготовления бетонные и железобетонные фундаменты разделяются на:

• сборные фундаменты;
• монолитные фундаменты.

По особенностям работы фундаменты разделяются на:

• жесткие фундаменты, в которых деформациями изгиба можно пренебрегать (подавляющее большинство фундаментов) ;
• гибкие фундаменты, которые работают на изгиб и проектируются как изгибаемые элементы (плитные фундаменты, ленточные под колоннами и т.д.).

Различие между гибкими и жесткими фундаментами проявляется лишь в способах их проектировании (т.е. при выборе их конструкции, размеров, армирования, класса бетона и т.д.), технология же устройства таких фундаментов в большинстве случаев такая же, как и у жестких фундаментов.

По конструкции фундаменты разделяются на три группы:

• мелкозаглубленные фундаменты (другие названия: «фундаменты на естественном основании»; «фундаменты, сооружаемые в открытых котлованах», «обычные фундаменты» и т.д.):
— ленточные фундаменты ;
— отдельные (другое название «столбчатые фундаменты») ;
— плитные фундаменты;
— массивные под машины ;
• свайные фундаменты;
• специальные фундаменты глубокого заложения.

Читать еще:  Какой утеплитель лучше для стен деревянного дома внутри под вагонку?



Мелкозаглубленные фундаменты

Мелкозаглубленные фундаменты имеют много разновидностей, которые можно свести к следующим четырем группам:

• ленточные;
• столбчатые;
• плитные;
• массивные под машины.

Выбор типа фундамента зависит от конструкций, которые на них будут опираться, и от грунтовых условий.

Ленточные фундаменты обычно располагают под стенами бескаркасных зданий, столбчатые фундаменты – под колоннами, плитные – как под стенами, так и под колоннами в неблагоприятных инженерно-геологических условиях («слабые» грунты, карстовые явления и проч.) или при очень больших нагрузках на основание.

Каждый из типов фундаментов имеет множество разновидностей. Например, ленточный фундамент может быть не только сплошным, но и прерывистым, когда его нижняя уширенная часть выполняется из блоков, устанавливаемых не вплотную друг к другу, а с «просветами» 0,1…0,6м. В неблагоприятных грунтовых условиях ленточные фундаменты могут представлять систему взаимно пересекающихся лент, которая работает подобно плите, как единая конструкция («перекрестные ленточные фундаменты»). Для малоэтажных зданий у ленточного фундамента зачастую не требуется уширенной нижней части («подушки»), что делает подобный фундамент исключительно простым по технологии изготовления.

Отдельный (столбчатый) фундамент может быть «стаканным», т.е. с углублением (стаканом) для установки в него сборной железобетонной колонны, или «бесстаканным» – без такого углубления (при монолитной или стальной колонне).

Плитный фундамент может иметь ребра жесткости и может проектироваться без них.

Особым разнообразием отличаются фундаменты под машины, так как каждый вид машин предъявляет к фундаменту свои специфические требования.

Свайные фундаменты

Свайные фундаменты обычно включают сваи и соединяющий их ростверк, но в ряде случаев ростверк может отсутствовать.

Сваи в фундаментах под стены зданий обычно располагаются параллельными рядами (обычно в 1…4 ряда в зависимости от погонной нагрузки и несущей способности принятых свай). При восприятии сосредоточенных нагрузок от отдельных опор сваи располагаются «кустами» (чаще всего по 4…12 свай). Если несущая способность свай достаточно высока или сосредоточенная нагрузка мала, можно ограничиваться одной сваей под опору («односвайный фундамент»). В частности, при нагрузках на опору менее 300кН очень эффективными могут быть сваи-колонны, выполняющие одновременно функции фундамента и колонны

Ростверки выполняются из монолитного, реже сборного железобетона. Если ростверк опирается непосредственно на грунт, он называется низким если между ним и грунтом остается зазор – высоким. В ряде случаев могут быть наиболее эффективными безростверковые свайные фундаменты: на сваях монтируются железобетонные наголовники (на строго заданных отметках), и надземные конструкции опираются непосредственно на них.

Последние десятилетия разработано много новых конструкций свайных фундаментов, которые экономически более эффективны, чем традиционные типы, но чаще всего сложней их.

В настоящее время сваи изготовляются в основном из железобетона. В отдельных случаях могут использоваться другие материалы (дерево, сталь), но это бывает редко. В мировой практике известно около 500 видов свай, однако, широкое применение имеют лишь очень малая их часть. Существуют различные классификации свай, среди которых в первую очередь следует назвать разделение свай по месту их изготовления:

• сваи, изготовляемые на заводе, доставляемые в готовом виде на строительную площадку, и погружаемые в грунт забивкой, вибрированием или вдавливанием (такие сваи обычно называют «забивными» независимо от способа погружения)
• сваи, изготовляемые непосредственно на строительной площадке (с использованием специальных машин и монолитного бетона).

В нашей стране наибольшее распространение получили предварительно изготовленные (забивные) сваи, что в значительной мере связано с суровыми климатическими условиями нашей страны, а также с общей ориентацией строительной отрасли быв. СССР на сборный железобетон.

За рубежом сваи, изготовляемые на строительной площадке, используются шире, чем готовые сваи, погружаемые забивкой или другими способами.

Специальные фундаменты глубокого заложения

К специальным фундаментам глубокого заложения обычно относят:

• глубокие опоры;
• «стены в грунте»;
• опускные колодцы.

Глубокие опоры отличаются от буровых или набивных свай только большими размерами (диаметр до 2,5м, глубина до 60м). Чаще всего они делаются с уширенным нижним концом, иногда с несколькими уширениями. Каждый конкретный вид глубоких опор делается с помощью той или иной специальной машины (комплекса машин).

Стена в грунте обычно понимается не только как конструкция глубокого фундамента, но и как определенная технология устройства подземных помещений. По контуру будущего сооружения откапывается глубокая узкая траншея (обычно шириной 0,6м, глубиной 20…30м, иногда до 50м), в нее устанавливается арматура, и производится заполнение бетонной смесью (иногда используются сборные железобетонные элементы). После этого грунт внутри контура образовавшейся замкнутой стены удаляется с помощью землеройных машин, и создается пространство подземных помещений. Для облегчения восприятия бокового давления грунта железобетонными стенами на одном или нескольких уровнях устраиваются анкерные крепления (путем пробуривания в стене и в грунте шпуров и устройства в них железобетонных тяг). Для предотвращения обрушения стенок глубоких траншей, в процессе откопки такие траншеи заполняются глинистым раствором (бентонитовой суспензией).

Стена в грунте может возводиться также и путем устройства сплошного ряда взаимно пересекающихся (в плане) буровых свай.

Стены в грунте могут использоваться не только как фундаменты и ограждения подземных помещений, но и как противофильтрационные завесы. В таких случаях вместо бетона могут использоваться менее прочные, но водонепроницаемые материалы (цементноглинистые растворы, асфальт и проч.).

Опускной колодец – это большое железобетонное изделие, в плане кольцеобразное или прямоугольное (коробчатое), которое погружается в грунт под действием собственного веса при удалении грунта из его внутренней зоны. Обычно при удалении грунта производится подкапывание под нижние опорные кромки опускного колодца, а сам опускной колодец по мере погружения наращивается сверху (производится дополнительное бетонирование, если колодец монолитный, или дополнительный монтаж, если он сборный железобетонный). В случае «зависания» колодца его дальнейшее погружение обеспечивается вибрацией или дополнительной нагрузкой.

Полный текст данной статьи, а также ее продолжение (см. содержание ниже) вы можете прочитать на сайте ООО «Вирамакс+»

Основания и фундаменты

При строительстве мостов на устройство фундаментов затрачивают до 40% времени и труда и до 30% финансовых средств, а в сложных инженерно-геологических условиях эти показатели еще выше.

Повышение экономической эффективности фундаментостроения должно осуществляться в неразрывной связи с повышением качества работ, которое во многом предопределяет надежность и долговечность любых сооружений в целом. Особое внимание требуется уделять доброкачественному проектированию и выполнению подземных работ, поскольку из-за отсутствия надежных методов контроля за состоянием оснований и фундаментов в период эксплуатации сооружений не всегда удается своевременно принять необходимые меры по устранению последствий случайных дефектов. Такие дефекты, возникшие в результате допущенных ошибок при проектировании и не замеченные в период возведения фундаментов, в дальнейшем, спустя некоторое время, начинают проявляться в виде разного рода деформаций сооружений, затрудняющих или исключающих нормальную их эксплуатацию. Устранение дефектов, как правило, требует затрат, значительно превышающих первоначальные, а для мостов, кроме того, и длительных перерывов или ограничений движения обращающихся нагрузок.

Чтобы проектировать и строить фундаменты не только экономично, но, главное, надежно, необходимо ясно представлять, как передаются на грунты нагрузки от сооружений, особенности поведения грунтов под действием на них сжимающих, выдергивающих и сдвигающих нагрузок, как изменяются свойства разных грунтов при действии на них воды, какие фундаменты и в каких грунтах следует применять, какими способами их возводить. Ответы на перечисленные и многие другие вопросы можно получить в результате изучения предмета «Основания и фундаменты».

Для изучения предмета «Основания и фундаменты» необходимо знать основы инженерной геологии, механики грунтов и гидрогеологии. Инженерная геология изучает и оценивает влияние геологических факторов на работу проектируемых зданий и сооружений, а также возможные изменения этих факторов в результате нарушения природных условий при возведении и эксплуатации зданий и сооружений. Механика фунтов занимается изучением напряженно-деформированного состояния и физико-механических свойств грунтов оснований, разработкой методов расчета прочности и деформаций оснований, способов определения давления грунтов на ограждающие конструкции. Гидрогеология изучает подземные воды, содержащиеся в толще грунтов.

§ 2. Основные понятия. Классификация оснований и фундаментов


Рис. В. 1. Фундамент опоры моста из одного несущего элемента 1 — надфундаментная часть опоры; 2 — фундамент; 3 — поверхность грунта (дно водотока); 4 — уровень размыва; 5 — несущий пласт грунта; 6 — условный контур основания; 7 — подошва фундамента; 8 — боковая грань фундамента; 9 — уступ; 10 — обрез фундамента; d — глубина заложения фундамента; А — высота фундамента; d1 — расчетное заглубление фундамента в грунт


Рис. В. 2. Фундамент из куста несущих элементов 1 — надфундаментная часть опоры; 2 — фундамент; 3 — ростверк; 4 — тампонажный слой бетона; 5 — несущие элементы; 6—поверхность грунта (дно водотока); 7 — уровень размыва; 8 — несущий пласт грунта; 9 — подошва тампонажного слоя; 10—боковая поверхность ростверка; 11 — обрез фундамента


Рис. В. 3. Безростверковая опора 1 — подферменная плита (насадка); 2 — стойка; 3 — фундамент стойки; 4 — поверхность грунта (дно водотока); 5 — уровень размыва

Все здания и сооружения опираются на поверхностные слои земли (глины, пески, скальные породы и др.), именуемые в строительной практике грунтами.

Основанием называют часть массива грунтов, непосредственно воспринимающую нагрузку и вследствие этого подверженную деформациям под ее воздействием. Основание из грунтов природного сложения называют естественным. Основание из предварительно уплотненных или укрепленных тем или иным способом грунтов называют искусственным.

Если основание состоит из одного слоя грунта, его называют однородным, если из нескольких слоев — неоднородным. Слой (пласт) грунта, на который опирается фундамент, называют несущим слоем, а нижележащие слои — подстилающими.

Фундаментом называют часть здания или сооружения, находящуюся ниже поверхности грунта (на суше) или ниже самого низкого (меженного) уровня воды в водотоке (водоеме) и предназначенную для передачи нагрузок на основание. Различают массивные фундаменты, состоящие из одного несущего элемента (рис. В.1), и немассивные, состоящие из группы (куста) несущих элементов — свай разных видов, свай-оболочек (оболочек), свай-столбов (столбов), объединенных в единую конструкцию плитой, называемой ростверком (рис. В. 2).

Независимо от типа фундаментов и особенностей их конструкции принято называть обрезом фундамента поверхность его соприкасания с надфундаментной частью здания или сооружения; подошвой фундамента нижнюю поверхность его соприкасания с грунтом основания; высотой фундамента расстояние от его подошвы или нижнего конца (низа) несущих элементов до обреза; глубиной заложения фундамента расстояние от поверхности грунта или уровня воды в водоеме до подошвы фундамента или низа несущих элементов.

Под воздействием на фундамент вертикальных нагрузок, равномерно сжимающих грунты основания, происходят перемещения зданий и сооружений, называемые осадкой. При действии на фундаменты неравномерных сжимающих нагрузок наблюдаются наклоны, именуемые кренами. Воздействие больших горизонтальных нагрузок иногда приводит к смещениям, называемым сдвигами.

Для предотвращения возможности появления недопустимых осадок, кренов или сдвигов зданий и сооружений (исходя из условия обеспечения их нормальной эксплуатации) фундаменты закладывают на некоторой глубине от дневной поверхности, чтобы передать расчетные нагрузки на более прочные грунты.

В зависимости от особенностей передачи нагрузки на грунты основания фундаменты подразделяют на два типа: мелкого и глубокого заложения. Характерной особенностью фундаментов мелкого заложения (см. рис. В. 1), иногда неправильно называемых «фундаментами на естественном основании», является передача на основание вертикальных, горизонтальных и изгибающих (от моментов) нагрузок от надфундаментной части сооружения только через их подошву. Их боковая поверхность в работе не участвует из-за невозможности, как правило, обеспечить засыпку пазух между боковыми поверхностями фундаментов и котлованов грунтом с плотностью, равной или выше природной. В отличие от фундаментов мелкого заложения нагрузки, воспринимаемые фундаментами глубокого заложения (см. рис. В. 2), передаются на грунт не только через их подошву или торец несущих элементов в виде свай, оболочек, столбов либо опускных колодцев, но и через их боковую поверхность вследствие проявления сил трения, сопротивляющихся вдавливанию (вертикальному смещению) фундаментов в грунт, и сил бокового отпора грунта, сопротивляющихся смещению (сдвигу или повороту) фундаментов.

Благодаря тому, что в работе фундаментов глубокого заложения кроме подошвы участвует их боковая поверхность, повышается степень использования прочностных свойств материалов, а следовательно, сокращается их расход. Для устройства фундаментов глубокого заложения в равных с фундаментами мелкого заложения условиях требуется, в зависимости от конструкции фундаментов и сложности местных особенностей строительства, в 2—4 раза меньше бетона. При этом объем земляных работ сокращается в 5—10 раз, затраты труда и сроки строительства фундаментов уменьшаются в 1,5—3 раза. Кроме существенной экономической эффективности фундаменты глубокого заложения обладают более высокой надежностью.

Водопропускные трубы сооружают, как правило, с фундаментами мелкого заложения и редко с фундаментами из свай разных типов. Опоры мостов традиционной конструкции, имеющие надфундаментную часть, возводят с фундаментами как мелкого, так и глубокого заложения.

Применяемые для мостов, водопропускных труб, зданий и других сооружений фундаменты мелкого и глубокого заложения подразделяют по конструктивным особенностям. Фундаменты мелкого заложения можно разделить на массивные, сплошные в виде плиты, ленточные, стоечные, комбинированные. Фундаменты глубокого заложения подразделяют по виду несущих элементов: из свай, оболочек, столбов или опускных колодцев.

В свою очередь фундаменты перечисленных видов могут быть монолитными, полностью возводимыми на месте постройки, и сборными, монтируемыми из заранее изготовленных элементов. Промежуточное положение занимают сборно-монолитные фундаменты, состоящие из сборных элементов, омоноличиваемых бетоном, например сваи с монолитной плитой, фундаменты из сборных железобетонных оболочек, заполняемых бетоном, и т. п.

Помимо перечисленных основных видов фундаментов в практике строительства мостов и труб известны разновидности фундаментов, представляющие собой видоизмененные основные конструкции, например безростверковые фундаменты опор мостов, так называемые безростверковые опоры. Характерной особенностью таких опор (рис. В. 3) является использование нижней заглубленной в грунт части стоек в качестве фундамента, не имеющего объединяющего их ростверка, а верхней части стоек, возвышающейся над грунтом или над водой и объединенной подферменной плитой (насадкой), в качестве надфундаментной конструкции опор. В качестве стоек опор используют сваи, оболочки или столбы.

Безростверковые опоры широко применяют для мостов с длиной пролетных строений до 33 м, в ряде случаев до 100 м. Опоры проектируют преимущественно из одного, реже из двух рядов стоек по фасаду моста. В каждом ряду имеется две и более стоек.

Отказ от устройства ростверка в конструкции опор одновременно с уменьшением потребности в бетоне обеспечивает значительное сокращение затрат ручного труда и сроков возведения опор главным образом благодаря исключению котлованных работ по устройству ростверка.

Ссылка на основную публикацию
Adblock
detector